

Australian Government

Australian Radiation Protection and Nuclear Safety Agency

Australian Clinical Dosimetry Service

Directly measured k_Q ACDS Fact

Introduction

The ACDS has moved from using the tabulated k_Q values published in TRS-398 to the directly measured k_Q factors provided by ARPANSA. From 1st July 2016, all photon doses measured by the ACDS in audits will be derived from the directly measured calibration service.

Summary

The primary standards laboratory at ARPANSA now offers MV photon beam measured k_q factors. Up until recently, the only option in Australia has been to use the tabulated k_q values published in TRS-398. However, the TRS-398 protocol recommends the use of chamber specific, measured k_q values where available in preference to the generic values (Andreo *et al* 2000). The ACDS chambers have been directly calibrated in MV photon beams and on average the difference is up to 1.2 % (see Table 1). The ARPANSA measured k_q values are within the uncertainty of the TRS-398 published k_q values (Wright *et al* 2015).

Chamber	6MV	10MV	18MV
NE 2571	-0.4	-1.0	-1.1
NE 2561	-0.2	-0.8	-1.2
PTW 30013	-0.7	-1.1	-1.1
IBA FC65-G	-0.9	-1.3	-1.4

Table 1 Shift in N_{D,w} with directly measured k_Q factors compared to TRS-398 tabulated k_Q factors.

Directly measured chamber specific k_Q values are now used to determine the dose in ACDS audits. The ACDS OSLDs and ion chamber arrays are cross calibrated against calibrated Farmer chambers with measured k_Q values. This means all ACDS audits will utilize the new k_Q values.

For national uniformity and global harmonization, the dose will be determined in a consistent manner in all ACDS audits. This means that facilities using the TRS-398 tabulated values for k_q to perform dosimetry will be audited against ACDS dose as determined using directly measured k_q values. Where this difference contributes to an action or out of tolerance audit result the ACDS audit report will contain a comment explaining the origin of the difference.

References

Andreo P, Burns DT, Hohlfeld K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S, Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA TRS-398 (2000)

Wright T, Lye JE, Ramanathan G, Harty PD, Oliver C, Webb DV, Butler DJ, Direct calibration in megavoltage photon beams using Monte Carlo conversion factor: validation and clinical implications. Physics in medicine and biology, 60(2):883 (2015)

D. J. Butler, G. Ramanathan, C. Oliver, A. Cole, J. Lye, P.D. Harty, T. Wright, D. V. Webb, Direct megavoltage photon calibration service in Australia, Australas. Phys. Eng. Sci. Med. 37 No 4 (2014) p753-761 (2014)