Research into bio-effects at low levels of exposure

The low-level studies reviewed by the Working Group are summarised in the table below.

In vitro

Author	Exposure	Test	Theme	Endpoint	Outcome	Impact	Notes
		System					
Albee et al. (1997)	835.62 MHz FMCW and 847.74 MHz CDMA	C3H10T1/2 mouse embryo cells	Gene expressio n	Effects on the transit of quiescent cells into the proliferation cycle, transit of log phase cells into the plateau growth phase	No effect on the expression of c-jun or c- myc proto-oncogenes	No effect	
Cain et al. (1997)	836.55 MHz TDMA-modulated in repeated cycles of 20 min on/20 min off 24h/day for 28 days. SARs of 0.15, 1.5 and 15 mW/Kg.	C3H/10T1/2 cells used in 16 different experiments in terms of the number, density, and area of foci.	Tumor promotio n	Alteration of TPA- induced focus formation. Enhancement of tumour promotion.	No alteration of TPA- induced focus formation thus no effect on tumour promotion	No effect	
Cleary et al. (1997)	2450 MHz RIF (SAR greater and less than 25 W/Kg) Isothermal RF. 24 h exposure.	Cytolytic T lymphocytes (CTLL-2)	Cell proliferat ion	CTLL-2 proliferation	At SAR > 25W/Kg reduction in CTLL-2 proliferation. At lower SARs increase in CTLL- 2 proliferation immediately after exposure but reduced 24 h post-exposure	No effect	It is questionab le whether this study was truly isothermal

					proliferation	
Donnellan et al. (1997)	835 MHz for 20 min, 3 times per day for 7 days. Power density of 8.1 +/- 3mW/cm ² .	Mast cell line, RBL- 2H3	Cell proliferat ion	DNA synthesis and cell replication, actin replication and cell morphology, granule secretion	After day 4 DNA synthesis and cell replication increased, actin replication and cell morphology altered, enhancement in the amount of beta- hexosaminidase released. No effects on levels of cytoskeletal protein synthesis or of beta-actin mRNA.	
Fesenko et al. (1995)	42.25 GHz for 20-30 m	Solution (100 mmol/l KCl with Ca2+ added)	Calcium efflux	Channel activity	Channels were partially mediated by changes in the solution properties	
French et al. (1997)	835 MHz for 20 min, 3 times per day for 7 days. Power density of either 40+15 mW/cm ² or 8.1 +/- 3mW/cm ² .	Human astocytoma cell line, U- 87 MG	Cell proliferat ion	DNA synthesis. Cell morphology. Cell proliferation.	At 8.1 mW/cm ² decrease in the rate of DNA synthesis and cells flattened and spread out. At 40 mW/cm2 no effect on cell proliferation but increase in cell spreading and also the appearance of actin containing blebs at localised sites on the membrane.	
Garaj- Vrhovac (1999)	MW radiation. No further specification	12 human subjects occupationall	Blood lymphoc ytes	Cell kinetics Genome damage	Increase in the frequency of micronuclei. Disturbances in the	The abstract is very vague

		y exposed			distribution of cells in the first, second and third mitotic division.		
Geletyuk et al. (1995)	42.25 GHz for 20-30 m. Power density of 100 μ W/cm ² .	Single Ca(2+)- activated K+ channels in cultured kidney cells	Calcium efflux	Channel affinity	Cooperativity and binding characteristics of the channel activation by internal Ca2+ altered.		
Goswami et al. (1999)	835.62 MHz (FMCW) and 847.74 MHz (CDMA). Average SAR of 0.6 W/Kg.	C3H10T1/2 murine embryonic fibroblasts	Gene expressio n	Fos, jun and Myc mRNA levels. DNA binding activity of AP1, AP2 and NF- kappaB.	No effect in the Jun and Myc mRNA levels. No effect in the DNA binding activity of AP1, AP2 and NF-kappaB. 2-fold increase in Fos mRNA levels (for FMCW) and 1.4-fold increase (for CDMA)	No effect	
Harvey et al. (2000)	864.3 MHz (CW) for 20 min, 3 times per day for 7 days. Average SAR of 7 W/Kg.	Human mast cell line, HMC-1. 588 genes were screened.	Gene expressio n.	Protein kinase C	Activation of Protein kinase C. Effects seen on 3 out of 588 genes.		
Ivaschuck et al. (1997)	836.55 MHz TDMA for 20, 40 or 60 min in a repeating cycle (20 min on/20 min off). SARs of 0.26, 2.6 and 26 μ W/g. Peak power level of 9 mW/cm ² .	PC12 rat phenochromo cytoma cells	Gene expressio n	Expression of genes c- fos and c-jun	At the 3 SARs specified no change in the c-fos. At the peak power level decrease in the c-jun expression (39% aver.) after 20 min exposure.	No effect at low levels. The decrease of c-jun expressio n at the higher	

						level could be due to heating.	
Kwee et al. (1998)	960 MHz GSM orELF in a TEM cellfor 3 differentexposure times.3 different powerlevels.	Cell cultures of transformed human epithelial amnion cells	Cell proliferat ion	Cell proliferation	For GSM linear correlation between power level and growth change. For ELF linear correlation between the length of exposure time to obtain maximum effect and field strength		
Litovitz et al. (1997)	60 Hz AM or 50 Hz burst-modulated DAMPS phone system together with band- limited 30-100 Hz noise rms ampl. Of up to 10μT for 8 h	L929 cells	ELF noise on RF	ODC levels	Decrease in ODC enhancement till total inhibition above 2 µT.	No explanatio n of why this happens given	
Malyapa et al. (1997b)	835.62 MHz (FMCW) and 847.74 (CDMA) in RTLs for up to 24 h. SAR of 0.6 W/Kg.	Mouse C3H10T1/2 fibroblasts and human glioblastoma U87MG cells	DNA	DNA damage	No significant difference between the test group and the controls after exposure to either signal	No effect	
Penafiel et al. (1997)	835 MHz TDMA phone system amplitude modulated at a range of frequencies for 24 h. Also AMPS phone	L929 murine cells	ODC activity (& ELF noise?)	ODC levels	TDMA exposure showed an increase in ODC activity. AMPS exposure had no effect		This is similar to the study by Litovitz

						, , , , , , , , , , , , , , , , , , , ,
	system exposure.					
	SAR of appr. 2.5 $W/k\alpha$					
Dhilling of	912 5625 MU ₇	Т	DNA	DNA single strend	Increases as well as	
r m ps et	(iDEN) or 836 35	1- lymphoblasto	DNA	breaks	decreases in DNA	
al. (1996)	(IDEN) OI 830.33 MH ₇ (TDMA)	id cells		breaks	damaga wara observed	
		iu celis			depending on exposure	
					and signal type	
Pomano	50 MHz modulated	Jurkat T	Gana	Expression of the ets1	Overexpression of the	
Spice et	at 16 Hz	lymphoblasto	expressio	mRNA	ets1 mRNA	
al (2000)	0.2 µT magnetic	id and Levdig	n	IIIXIXA		
al. (2000)	field strength	TM3 cell	11			
	60 V/m electric field	lines				
	strength	mes				
Schirmac	1 8 GHz GSM	Co-culture	Blood-	Permeability of BBB	Overall permeability of	The
ber et al		model	brain	Termedoliky of DDD	the BBB was	nathophysi
(2000)		consisting of	barrier		significantly higher in	ological
(2000)		astrocytes	(BBB)		exposed samples than in	mechanis
		and porcine	(222)		control cultures	m for
		brain				these
		capillary				results is
		endothelial				unknown.
		cells				
Velizarov	960 MHz (GSM) in	Cell line	Cell	Cell proliferation	No change in cell	
et al.	TEM cell	Size not	proliferat		proliferation under	
(1999)		specified	ion		different temperatures	
Wolke et.	900, 1300 and 1800	of isolated	Calcium	Intracellular calcium	No significant	
Al. (1996)	MHz pulse	ventricular	homeost	concentration ($[Ca^{2+}]_I$)	differences in calcium	
	modulated at 217 Hz	cardiac	asis		concentration between	
	(14% duty cycle) in	myocytes of			exposed and sham	
	a TEM cell.	the guinea			exposed.	
	Mean SARs within 1	pig				

order of magn. of			
1 mW/kg.			
Variation between			
500 s of			
exposure/sham			
exposure.			

In vivo

Author	Exposure	Test	Theme	Endpoint	Outcome	Impact	Notes
	_	System		-		_	
Adey et al. (1999)	836 MHz (NADC/TDMA) over 2 years for 4 consecutive days, 2h/day. SARs of localised peak brain exposures of a phone user.	236 Fisher- 244 rats.	Brain tumour	Tumour initiation or promotion	No increase in tumorgenetic effects. Insignificant decrease in tumour incidence from exposure to the TDMA field.		
Asanami and Shimono (1997)	30°C for 1-6 h. 37°C for 0.5-4 h. 40°C for 1-2 h. Controls were exposed to room temperature	Male ddY mice	Micronu clei formatio n	Micronucleated polychromatic erythrocyte (MNPCE) frequency	Increase in MNPCEs with a rise in temperature	High body temperatur es induce micronucl ei formation	
Brown- Woodman et al. (1989)	27.12 MHz near a SW diathermy device for 5 wks	Female rats.	Fertility	Number of matings. Number of conceptions.	Reduced number of matings. Reduced number of conceptions.		
Chaugnaud et al. (1999)	900 MHz (GSM) for 2 h/day over 2 weeks. Power density 55 or 200 μW/cm ² . SARs of 75 and 270 mW/Kg.	2 m old female Sprague- Dawley rats treated with benzo(a)p yrene	Cancer	Anti- phosphatidylinosito l autoantibody levels. Tumour acceleration or delays. Animal survival.	No effect on autoantibody levels. No tumour acceleration or delays. Animal survival was not modified.	No effect.	This study could be related to humans.

Danniells et	Transverse	Transgeni	Stress	Beta-galactosidase	Significant	
al. (1998)	electromagnetic	c	response	(reporter) induction	differences from	
	cell (TEM) held in	nematodes	s		25°C controls both	
	an incubator at	(Caenorha			at 2 and 16 h, but	
	25°C inside a	bditis			not at 4 or 8 h	
	shielded room	elegans			The well arrays	
	MW (CW)	strain			most affected were	
	exposure at various	PC72)			those in the rows	
	freq and power	/			closest to the	
	levels but most				source	
	experiments at 750				Lower power	
	MHz and 27 dBm.				densities tended to	
					induce larger	
					responses	
De Pomerai	750 MHz (CW)	Nematode	Heat-	Heat-shock	Increase in heat-	
et al (2000)	SAR of 1 mW/Kg	s	shock	proteins	shock proteins	
et ul. (2000)	Overnight	5	response	proteins	shoek proteins	
	exposure		response			
Detlays et	(1) 53.53 GHz no	Wistar rats	Reparati	Glycoprotein	Without	
al. (1996)	modulation	Subjects	ve-	macromolecules	modulation the	
	(2) 42.19 GHz no	with	proliferat	Hexoses and sialic	inflammatory	
	modulation	excised	ive	acid	exudation	
	(3) 42.19	full-	processe	concentrations.	diminished.	
	modulated in a	thickness	s	Collagen	With modulation	
	200MHz wide	dermal	5	accumulation	the inflammation	
	band	wounds in			was intensified	
	Exposed for 5 d 30	the			was intensitied.	
	m/day	intracapul				
		ar region.				
Elekes et al.	2.45 GHz (CW) or	Male and	Immune	Spleen index.	CW exposure	
(1996)	50 Hz (AM, square	female	system	Spleen antibody-	increased (+37%)	

	wave) over 6 days for 3 h/day	Balb/c mice		producing cells	the number of antibody-producing cells in males. AM exposure increased the spleen index (+15%) and the number of antibody-producing cells in males.		
Fesenko et al. (1999)	8.15-18 GHz (1 Hz within) for 5 h -7 days. Power density of 1 μ W/cm ² .	mice	Cell immunit y	TNF production inperitoneal macrophages and splenic T lymphocytes. Proliferation of T cells in response to mitogenic stimulation.	After 24 h exposure increase in TNF production and splenic T lymphocytes. Also increase in proliferation of T cells. After 7 day exposure decrease in TNF production.		SARs not specified in abstract
Frei et al. (1998a)	2450 MHz (CW) in circularly polarised waveguides over 18 months for 20 h/day, 7 days/wk. SAR of 0.3 W/Kg.	C3H/HeJ mice. 100 exposed. 100 sham exposed.	Cancer	Mammary tumour incidence. Latency to tumour incidence. Tumour growth rate. Longevity.	No significant effect in tumour incidence, latency to tumour onset and rate of tumour growth. No significant effect in longevity	Replicated No significant effect	
Frei et al. (1998b)	2450 MHz (CW) in circularly polarised waveguides over	C3H/HeJ mice. 100	Cancer	Mammary tumour incidence. Latency to tumour	No significant effect in tumour incidence, latency	No significant effect	

	78 wks for 20 h/day, 7 days/wk.	exposed. 100 sham		incidence. Tumour growth	to tumour onset and rate of tumour		
	SAR OF 1.0 W/Kg	exposed.		rate.	growth.		
Fritze et al. (1997a)	GSM cellular phone at discontinuous transmission mode. SARs of 0.3 W/Kg (GSM), 1.5 W/Kg (GSM) and 7.5 W/Kg (CW). 24 h exposure for 7 days	Rat brain.	Genomic response	Changes in the messenger RNAs of hsp70, the transcription factor genes c-fos and c- jun, the glial structural gene GFAP, protein products of transcription factors, stress proteins, marker proteins of astroglial and microglial activation and cell	Slight increased expression of c-fos in the cerebellum, neocortex and piriform cortex. No effect on the c-jun and GFAP. After 24 h no effect on FOS and JUN proteins. After 7 days no effect on cell proliferation or expression of astroglial and microglial marker proteins	Some minor effects but no lasting adaptive or reactive changes in the brain	
Fritze et. al. (1997b)	900 MHz GSM for 4 h. SARs of 0.3, 1.5 and 7.5 W/kg	40 rats. 20 exposed and sham- exposed. 20 controls	Blood- brain barrier permeabi lity	Serum albumin extravasations	Increase in serum albumin extravasations only at 7.5 W/kg SAR.	Unlikely pathologic al changes	
Higashikub o et al. (1999)	835.62 MHz FMCW or 847.74 MHz CDMA over 150 d for 4 h/d, 5	Fischer 344 rats. 3 sham- exposed	Brain tumor	Effect on the proliferation of the 9L brain tumor	For sham-exposed Group 1-median survival of 70 days, 27% survived 150.		

	d/wk. Average SARs of 0.75 +/- 0.25 W/Kg.	groups. Group 1 injected with 2-10 viable cells. Group 2 injected with 11- 36 viable cells. Group 3 injected with 37- 100 viable cells.			Group 2-median survival of 52 days, 14% survived 150. Group 3-median survival of 45 days, 0% survived 150. Exposed animals showed similar survival parameters		
Imaida et al. (1998a)	929.2 MHz (TDMA) through a 1/4-WL monopole antenna over 6 wks for 90 m/day, 5 days/wk. Liver peak SARs of 2.0-1.7 W/Kg. Whole-body peak SARs of 7.2-6.6 W/Kg. Whole-body aver. SARs of 0.80-0.58 W/Kg.	96 male F344 rats injected with diethylnitr osamine. 48 exposed. 48 sham exposed.	Carsinog enesis	Numbers and areas of GST-P positive foci	No significant effect in the numbers and areas of GST-P positive foci	No significant effect	
Imaida et al. (1998b)	1.439 GHz (TDMA) through a	96 male F344 rats	Carsinog enesis	Numbers and areas of GST-P positive	No significant effect in the	No significant	

	¹ / ₄ -WL monopole antenna over 6 wks for 90 m/day, 5 days/wk. Liver peak SARs of 1.91-0.937 W/Kg. Whole-body aver. SARs of 0.680- 0.453 W/Kg.	injected with diethylnitr osamine. 48 exposed. 48 sham exposed.		foci	numbers and areas of GST-P positive foci	effect
Jauchem et. al. (1998)	UWB pulses. 50, 500, 1000 pulses/s at a rise time of 174-218 ps Exposed for 2 m. E field of 87-104 kV/m.	10 anesthetise d Sprague- Dawley rats	Cardiova scular system	Heart rate and blood pressure	No effect	No effect
Jauchem et. al. (1999)	UWB pulses. 1 kHz for 0.5 s at a rise time of 318- 337 ps for 2 m (2 s on / 2 sec off). E field 19-21 kV/m.	14 Sprague- Dawley rats	Cardiova scular system	Heart rate and blood pressure	No effect	No effect
Jensh (1997)	915, 2450 or 6000 MHz CW at power densities of 10, 20 or 35 mW/cm ² .	Pregnant rats	Develop ment and growth	Various morphologic and psychophysiologic parameters	At 915 MHz no effects. At 2450 MHz increased offspring activity level. At 6000 MHz changes in some parameters	Although there were some parameter changes at 6000 MHz cellular and MW

Juutilainen						freq. Tested showed no significant effects.	
et al. <i>in press</i>							
Lai and Singh (1997)	2450 MHz (pulsed) for 2 h (2 μs pulses, 500 pps). Power density of 2 mW/cm2. SAR of 1.2 W/Kg.	Rat brain cells	DNA	DNA strand breaks	Free radicals were involved in RFR- induced DNA damage. Melatonin and spin-trap compound blocked these effects.		
Lai et al. (1997)	2450 MHz (pulsed) for 2 h (2 μs pulses, 500 pps). Power density of 2 mW/cm2. SAR of 1.2 W/Kg.	Rat brain cells	DNA	DNA strand breaks	Endogenous opioids played a mediating role in RFR-induced DNA damage. Naltrexone partially blocked these effects.		
Lu et al. (1999)	0.5 or 1 kHz UWB (pulsed, 180 or 200 ps rise time, 1.00 or 1.03 ns pulse width) in a GTEM cell for 6 m.	Male Wistar- Kyoto rats	Cardiova scular system	Heart rate. Systolic, mean and diastolic pressures.	Decrease in arterial blood pressure (hypotension). No effect on heart rate.		

	93 or 85 kV/m. SARs of 70 or 121 mW/kg. Sham exposure.						
Magras and Xenos (1997)	Experiments conducted around an "antenna park". Power densities 168-1053 nW/cm ² .	12 pairs of mice originally. 118 newborns after mating of pairs.	Reprodu ction and develop ment	Fertility. Prenatal development.	Decrease in the number of newborns per dam leading to irreversible infertility. Prenatal development improved.	Unreplicat ed	No control group was included.
Malyapa et al. (1997a)	2450 MHz (CW) in RTLs for 2 h. SARs of 0.7 and 1.9 W/Kg.	Cultured mammalia n cells	DNA	DNA damage	No significant difference between the test group and the controls after exposure	No effect	
Malyapa et al. (1998)	2450 MHz (CW) in for 2 h in a cylindrical waveguide system. SAR of 1.2 W/Kg.	Rat brain	DNA	DNA damage	No DNA damage observed	No effect	
Morrissey et al. (1999)	1.6 GHz (CW or pulsed at 11 Hz with a duty cycle of 4:1 and a pulse duration of 9.2 ms Iridium) for 1 h.	Mouce brain.	Gene expressio n	Expression of c-fos	No effect on c-fos at normal levels. At levels 6 times the peak dose (30 times whole body average) elevation of c-fos detected	No effect at non- thermal levels	
Novoselova et al. (1999)	8.15-18 GHz (1 Hz within) for 5 h.	Peritoneal macropha	Immune system	Tumour necrosis factor (TNF).	Increase in TNF production.		

Persson et al. (1997)	Power density of 1 µW/cm ² . 915 MHz CW and pulsed (at 217 Hz with 0.57 ms pulse width and at 50 Hz with 6.6 ms pulse width) in a TEM line for 2-960 m. Power of 0.001-10 W.	ges and splenic T cells of mice 1002 Fischer- 344 rats of both sexes. 630 exposed. 372 controls.	Blood- brain barrier	Immune response. Effects on MWs after antioxidant treatment. Frequency of pathological rats	Activation of cellular immunity 3 days after exposure Antioxidant treatment enhanced MW effects. The frequency of pathological rats was greater after CW exposure than pulsed-radiation exposure		
Stark et al. (1997)	3-30 MHz over 10 days (3 days switched off). Exposed group 0.5 km away with a field strength 1.59 mA/m. Unexposed group 4 km away with a field strength 0.076 mA/m.	10 cows. 5 exposed. 5 controls.	Melatoni n	Salivary melatonin concentrations	No overall significant effect. 2-7 fold increase of melatonin concentration on the first night of re- exposure after the transmitter was switched off for three days.		
Toler et al. (1997)	435 MHz horizontally polarised (pulsed, 1µs pulse width,1 kHz pulse rate) for	400 female C3H/HeJ mice. 200	Cancer	Mammary tumors. Tumor growth, latency and onset. Longevity.	No effect on the incidence of mammary tumors. No effect on the incidence of tumor	No effects	

	21 months, 22 h/day, 7 days/wk. Power density 1 mW/cm ² . SAR of 0.32 W/kg	exposed. 200 sham exposed.			growth, latency and onset. No effect on longevity.		
Tsurita et. al. (2000)	1439 MHz TDMA over 2 to 4 weeks for 1 h/d. SARs of 2 W/kg in the brain and 0.25 W/kg average over the whole body.	24 Sprague- Dawley rats divided into 3 groups. Exposed group arrayed in a circle near a central antenna. Unexpose d group placed in the array. Control group	Permeabi lity of the blood- brain barrier. Morphol ogical changes of the brain. Body- mass fluctuati ons.	Serum albumin levels. Assessment of Burkinje cells and the cellular concentration in the granular layer. Average body mass.	No observable changes	No effect	
Vijayalaxm i et al. (1997)	2450 MHz (CW) in circularly polarised wave guides over 18 m for 20 h/day, 7 days/wk. SAR of 1 W/kg	120 C3H/HeJ mice. 62 exposed. 58 sham exposed.	Cancer	Presence of micronuclei in polychromatic erythrocytes (PCEs) in peripheral blood and bone marrow	No significant difference in the incidence of micronuclei	No effect	

Vollrath et	900 MHz CW and	Male and	Melatoni	Melatonin	No effects	No effects
al. (1997)	pulsed at 217 Hz.	female	n	synthesis of the		
	For 15 m to 6 h.	Spraugue_		pineal gland		
	Power densities of	Dawley				
	$0.1-0.6 \text{ mW/cm}^2$.	rats and				
	SARs of 0.06-0.36	Djugarian				
	W/kg in rats and	hamsters.				
	0.04 W/kg in					
	hampsters.					
Vorobyov	945 MHz (AM at 4	8 adult	Nervous	Averaged	No difference in	No effect
et al. (1997)	Hz) for 10 m (1 m	male rats	system	electroencephalogr	the spectra	
	ON/1 m OFF).			am (EEG) spectra		
	Field strength of					
	0.1-0.2 mW/cm					

Human Experiments

Author	Exposure	Group	Theme	Endpoint	Outcome	Impact	Notes
Borbely et al. (1999)	900 MHz GSM ë/4 antennas (3). 1W/kg max, intermittent (15min on/15 min off) during sleep. Linearly polarised	24 young right handed males	Sleep	Sleep stages, waking time, EEG power during various stages	Waking after sleep onset reduced from 18 to 12 min, EEG power in non- REM sleep increased esp. at	Unreplicated. Health implication hard to evaluate, but changes well within normal variation.	
Braune et al. (1998a)	900 MHz GSM phone. 'operated by remote control'. Fixed order sham then exposed (35min each)	7 males, 3 females	Blood pressure	Systolic/ diastolic blood pressure, heart rate. Protocol: rest; standing; Valsalva manoeuvre in time <i>following</i> exposure/sham	BP sign higher at rest and on standing after rest, for exposed compared to sham. Heart rate values reduced in all manoeuvres. Autonomic function tests unaffected.	Unreplicated. Health implication hard to evaluate, but changes well within normal variation.	
Braune et al. (1998b) Corresponde nce to Braune et al. (1998a)							
de Seze et al. (1998)	900 Mhz GSM (217 Hz pulses, 1/8 duty cycle, 2 W peak power) over a month for	20 healthy male volunteers aged from 19 to 40y	Hormone levels	Serum adrenocortecotro pin, thyrotropin, growth hormone,	No difference in concentrations after exposure	No effect	

	2 h/day, 5 days/wk.			prolactin, luteinizing hormone, and follicle stimulating hormone concentrations			
de Seze et al. (1999)	(a) 900 MHz GSM (b) 1800 MHz DCS. Both 2hr/day, 5 day/wk for 4 wk @ max power	19 young males in each group, but 1 excluded from (a)	Melatonin	Total melatonin output (area under curve), time and magnitude of peak melatonin	No significant changes in any of the endpoints compared to pre-exposure night, either during or 2 weeks after exposure.	No effect	
Eulitz et al. (1998)	Pulsed high frequency electromagnetic field		Brain activity	Brain electrical response	Alteration of the brain's electrical response to acoustic stimuli		
Freude et al. (1998)	Cellular phone frequencies	Male subjects	Brain activity	Prepatory slow brain potentials (SP)	Decrease of SPs at central and temporo-parieto- occipital brain region	Replicated	
Freude et al. (2000)	Cellular phone frequencies	Male subjects	Brain activity	Bereitschaftspot ential (BP). Contingent negative variation (CNV)	No effects on either BP or CNV		
Hladky et al. (1999)	Mobile phone Motorola GSM	20 volunteers	Central nervous	Visual evoked potentials.	No effect on visual evoked	Talking on a mobile phone	

	8700 frequencies for 5-6 m.		system (CNS)	Memory and attention. Response and decision speed	potentials. No effect on memory and attention. The response and decision speed were significantly worse.	while driving can be a great risk
Kellenyi et al. (1999)	GSM phone signal		Brain activity	Auditory brainstream response	Increase in auditory brainstream response. 20 dB hearing deficiency in 2- 10 kHz range.	
Koivisto et al. (2000)	902 MHz GSM, 1 hr approx	24 males, 24 females	Cognitive testing	Battery of 12 reaction time tasks, involving shape & object recognition, decision making & vigilance	Of 15 comparisons, vigilance task highly sign. improved. Still sign. with Bonferroni correction	Main finding unreplicated. Health implication hard to evaluate, but changes well within normal variation.
Krause et al. (2000)	902 MHz	16 normal subjects	Brain activity	EEG power	Increased EEG power in the 8- 10 Hz band only. ERD/ERS responses altered in all the	

Mann & Roschke (1996)	Pulsed EMR at digital cellular phone frequencies	Healthy humans	Sleep	REM sleep. EEG signal	bands as a function of time and memory task. Reduced duration and percentage of REM sleep. EEG signal qualitative alterations. Increase in EEG power		
Mann et. al. (1998)	Pulsed EMR at digital cellular phone frequencies	Healthy humans	Heart rate	Heart rate during sleep	Heart rate not affected	No effect	
Mann et. al. (1998)	900 MHz pulsed at 217 Hz. Average power density of 0.02 mW/cm ² .	Healthy humans	Neuroend ocrine system	Nocturnal hormone profiles of growth hormone, cortisol, luteinizing hormone and melatonin	No significant alterations	No effect	
Preece et al. (1999)	915 MHz ë/4 antenna; 1 W continuous to simulate analog, 12.5% duty cycle (0.125 W	36 total: both groups: 9 males, 9 females; first group	Cognitive testing	Battery of 10 computer- delivered cognitive tests, measuring 15 endpoints	Of the 15 comparisons, choice reaction time is sign. (even with Bonferroni	Main finding unreplicated. Health implication hard to evaluate, but changes well within normal	

	average) to simulate digital.	larger age range		involving reaction times & accuracy	correction). Improvement for analog, but not digital. Post-hoc analysis of reaction times combined show	variation.	
Szmigielski et al. (1998)	0.738-1.503 MHz for 24 h 2 levels of exposure. Low intensities (20-180 V/m). High intensities (200-550 V/m).	61 healthy workers (aged 30- 50 y) exposed. 38 exposed to low intensities. 23 exposed to high intensities. 42 controls (aged 28- 49 y).	Blood pressure & heart rate	Parameters of diurnal rhythms(acropha se, amplitude and mean) of blood pressure and heart rate	similar changes. Exposed workers showed a significant lowering of the amplitudes of rhythms of blood pressure and heart rate and a shift of the acrophase to an earlier time. More pronounced effects at high intensities.	Clinical significance not established	
Urban et. al. (1998)	GSM frequencies	20 healthy volunteers	Central nervous system	Visual evoked potentials (VEP)	No effect	No effect	
Wagner et al. (1998)	900 MHz circularly polarised	24 healthy males	Sleep	EEG rhythms	Normal rhythms	No effect	

(pulsed at 217			
Hz, pulse width			
577 μs) over a			
whole night.			
Power flux			
density 0.2			
W/m^2 .			

Epidemiological Studies

Author	Exposure	Test System	Theme	Endpoint	Outcome	Impact	Notes
Hannson et al.	GSM and NMT	Mobile	Any symptoms	Any symptoms	GSM users		
(1998)	cellular phone	phone users			reported warmth		
	systems				sensation on,		
					behind and		
					around the ear		
					less frequently		
					than NMT users		
Hardell et al.	GSM and NMT	233 people	Brain tumor	Risk of brain tumor	Non-significantly		
(1999)	cellular phone	with brain			increased risk for		
	systems	tumors			tumor in the		
		(aged 20-80			temporal or		
		y).			occipital lobe on		
		466 controls			the same side as a		
		(for every			cellular phone.		
		subject 2			The increased risk		
		controls			was for the NMT		
		matching			system only		
		the sex, age					
		and study					
		region).					
Hardell et al.	Fluoroscopy.	634 men	Brain tumor	Brain tumor	Increased risk of		
(2000)	Radiotherapy.	and women			brain tumor		
	Medical X-rays.	aged 20-80					
	Exposure in the	years.					
	chemical industry	209 cases.					
	and in laboratories.	425					
	Celular phones	controls.					

Hocking (1998)	Mobile phone frequencies	Respondent s to a notice of interest	Symptoms	Burning sensation. Intra-cranial effects. Local symptoms.	40 cases of feeling a burning sensation in the temporal, occipital or auricular areas. Several cases reported intra- cranial effects. 3 cases reported local symptoms from wearing the phones on their belts.		
Kolmodin- Hedman et al. (1988)	RFR from plastic welding machines	113 men and women occupationall y exposed. 23 women controls. 305 pregnant female workers during 1974- 1984.	Health problems	Coordination and muscular function of the hands. Eye symptoms. Two-point discrimination (2-PD). Malformation or prenatal mortality.	Numbness in hands prevalent, esp. in women. Irritative eye symptoms reported by 23% m and 40% f. 9 out of 27 people tested had modest conjunctivitis. Significantly impaired 2-PD in women compared to controls. No significant effects on pregnancy outcomes.		
Lagorio et al. (1997)	KF generated by dielectric heat	481 women workers	Mortality	Malignant neoplasms.	Malignant neoplasms	Possible confounding	

	sealers			Leukemia.	slightly elevated.	effects of	
				Accidents.	Increased risks of	exposure to	
					leukemia and	solvents and	
					accidents.	vinyl chloride	
						monomer	
						make these	
						results	
						unclear.	
Reeves (2000)	RFR exceeding the	34 patients	Physiological	Warmth sensation.	Warmth sensation	No athermal	
	permitted exposure		and laboratory	Abnormal tissue	associated with	effects	
	limits		parameters	destruction.	power density.		
				Neurological or	Abnormal tissue		
				opthalmologic	destruction		
				findings.	negatively		
					correlated with		
					power density.		
					No neurological		
					or opthalmologic		
					findings.		

Author	Exposure	Test System	Theme	Endpoint	Outcome	Impact	Notes
Nelson et al (1997a)	10 MHz	Rats	Promotion effects	Toxicity and teratogenicity of 2-methoxyethanol	Enhanced toxicity in rats		
Nelson et al (1997b)	10 MHz	Rats	hypothermi a	Toxicity and teratogenicity of 2-methoxyethanol	Enhanced teratogenicity in rats		
Nelson et al (1998)	10 MHZ	Sprague- Dawley rats	Environm ental temperatur e effects on the toxicity of RF and 2ME	Toxicity and teratogenicity of 2-methoxyethanol	Environmental temperature affects the SAR needed to maintain a specific colonic temp. but does not affect the interactive toxicity of RF and 2ME		
Nelson et al (1999)	10 MHZ	Rats	Synergisti c interaction s between salicylic acid and RF or 2ME	Toxicity and teratogenicity of 2-methoxyethanol	No effect on RF. Limited evidence of antagonism with 2ME.		

Thermal levels of RF with Chemical agents

Dosimetry

Author	Exposure	Test	Theme	Endpoint	Outcome	Impact	Notes
		System					
Chou et. al.	837 or 1957	Sprague	Exposure	Produced SARs	Two-tenths of a		
(1999)	MHz by a 3×1	Dawley	system		watt input power		
	cm loop	rats			produced 10		
	antenna.				W/kg maximum		
	At 837 MHz				SAR and an		
	mean brain SAR				estimated 4.8		
	of 23 W/kg				W/kg average		
	At 1957 MHz				brain SAR in a		
	mean brain SAR				300g medium		
	of 22.6 W/kg.				size rat.		
Guy et al.	837 MHz plane	Solutions	Exposure	SAR uniformity	The best SAR		
(1999)	wave.	containing	methods		uniformity for		
	2450 MHz in a	suspended			suspended cells		
	TEM cell.	or plated			was found for a		
	3000 MHz in a	cells in			rectangular slab		
	stripline.	vessels			in a stripline.		
	1				The best SAR		
					uniformity for		
					plated cells was		
					found for a Petri		
					dish in a TEM		
					cell.		
Rowley et al.	RF exposure in	Biological	Dosimetry	Use of resonant	This type of		
(1998)	$a 1.1 \text{m} \times 1.1 \text{m} \times$	materials		cavities for RF	system		
	1.1m cubic			exposure of	unsuitable due		
	resonant facility			biological	to a number of		
				materials	inherent		
					deficiencies		

Reviews

Author	Exposure	Test	Theme	Endpoint	Outcome	Impact	Notes
		System					
Jauchem	RF	Humans	Health	Various		No effect	
(1998)			effects				
Verschaeve	Mobile phone		Cancer	Genetic,	The great		This paper
and Maes	frequencies			carcinogenic	majority of the		reviews the
(1998)	_			and teratogenic	papers reviewed		current research
				effects	showed no		into genotoxic
					effect.		effects at mobile
							phone
							frequencies

(Ken Karipidis, 6 November 2000)