Electromagnetic Energy (EME) Exposure assessment of Telstra's 5G trial retwork on the Gold Coast, Australia

5th Asian and Oceanic IRPA Regional Coréress on Radiation Protection – AOCRP5, Melbourne, Australia, 20 – 23, 9ay 2018

1 DY ARP

Steve Iskra, PhD Chief Technology Office, Telstra Corporation Limited 22 May 2018

T

Background

- In preparation for Telstra's 5G mobile network, measurements were performed at Telstra's trial millimetre wave (mmwave) 27 GHz 5G base station site located on the Gold Coast, Australia
- The purpose of the measurements was to ascert in the electromagnetic field (EMF) or electromagnetic energy (EME) levels associated with this new technology

eased by

comation Act

4

Objectives

EMF measurements were performed at Telstra's Southport Exchange located on the Gold Coast to:

Compare actual measured EMF levels with theoretical predictions of EMF levels from a 5G antenna to assess confidence in the computation of exclusion zong

tomation Act

- Assess environmental EMF levels from 5G and other radio sources at both indoor and outdoor areas in the vicinity of the base station
- Assess suitability of test equipment for mmy ave measurements
 Assess suitability of test equipment for mmy ave measurements

Operational radio systems located on Southport Exchange tower

System	ACMA description
LTE 700 MHz	Mobile
LTE 1800 MHz	Mobile
LTE 2600 MHz	Mobile
WCDMA 850 MHz	Mobile
400 MHz	Land mobile (e.s. two way service), fixed (point-to-point and point-to-motion), amateur services

Leased by

Indoor measurements

5G base station antenna

- Single User Multiple Input Multiple Output (SU-MIMO)
- 27 GHz phased antenna arrays
- Time Division Duplex (TDD) shared frequency channel where downlink and uplink are separated in time by the allocation of different time slots

Information

- Twoseams per array: H and V polarised
 - Refer to the second sec
- Sector coverage: azimuth (\pm 60°) and elevation (\pm 15°, \pm 7.5°)
- 🖕 Up to 800 MHz bandwidth (400 MHz for current trial)
- The ratio of downlink to uplink time slots can be altered

5G base station antenna (continued)

Beam width = 12° and maximum gain G_{max} =21 dBi (boresight)

- Non-boresight beams have lower gain
- 48 different beam positions
- Radiated power (EIRP[#]): 42 dBmW (15.8 W) per beam, 45 dBmW (31.5 W) per array and 48 dBmW (63 W) total @ 800 MHz bandwidth

https://www.ericsson.com/en/5

esight beam, maximum gain G_{max}

Time-t_o

and dynamic steering

Released by ARPANSA under the Freedom of Information And Measurements

EMF measurements from 5G base station antenna

Line of sight along the boresight beam

- Indoor: single antenna array under program control: single constant or resight beam, single polarisation, 800 MHz, 42 dBmW (15.8 W) EIRP
- Outdoor: base station antenna 2x2 MIMO, 400 MHz, 45 dBrow (31.5 W) EIRP, vehicle mounted user equipment (UE) antenna connected to base station to 'attract' the brown
- Broadband probe (< 1m from antenna), spectrum a_{1} spectrum and horn antenna (\geq 1m)
- TDD downlink/uplink ratio 23:1, high downlink Kammy) traffic generating 1-2 Gbps

Indoor

2

EMF measurements along boresignt beam

Notes

- Measurements scaled to 63 W total EIRP
- Uncertainties: precise measurement location with respect to boresight, field scattering, calibration.

Environmental EMF levels - Configurations

Indoors and outdoors

- Measurements representing exposure at time and place from 5G and other radio sources 'snapshot' of the RF environment
- **G** 5G system configuration and measurement:
 - **Q** 2x2 MIMO, 400 MHz, indoor TDD ratio 1:1, Sutdoor TDD ratio 23:1
 - High downlink traffic, combining user traffic and dummy traffic to generate 1-2 Gbps
 - Measurement of channel power usion spectrum analyser and horn antenna
- Indoor In-Building Coverage (IBC) sestem in 1800/2600 bands
- EMF levels in mobile bands be 3 GHz based on summation of uplink/downlink contributions
- Other radio sources measured over 27 MHz 3 GHz (1 min average)
- 'Isotropic' measurements

Environmental EMF – indoor/outdoor locations

Indoor gaming demonstration over trial 5G network

Baby monitor (1897 MHz)

400 MHz Walkie Talkie & 4G laptop (1800 MHz)

Environmental EMF - indoor spectrum

5G - 27 GHz

Channel power measurement with spectrum analyser and horn antenna

Environmental EMF levels - outdoor OUTDOOR

oum of car mounted 5G JE + BS @ 0.3 m from car, carpak

Sum of car mounted 5G UE + BS @ 1.5 m from car, carpak

owards BS, carpark

owards BS, pizza shop

Highest exposure		
Cumulative: 27MHz to 3GHz	0.19%	
5G	0.025%	

Comparing radiated powers

	Transmitter power, antenna gain	Radiated power*		
Typical mobile system below 3 GHz	50 - 100 W, ~17 dBi	64 - 67 dBmW (~2500-5000 W)		
Trial mmwave 5G system	0.5 W, 21 dBi	48 dBmW (63 W)		
 4 mobile systems operating at Southport Exchange Trial 5G system contributes less than 1 % total EIRP Comparable to mobile small cell (i. priRP) Expect commercial 5G macro systems to have similar EIRP to existing mobile systems 				
201	* Effective Isotropic Radiated Power			

nation Act

Findings

- Good alignment between predicted levels and measured levels binder test conditions
- Measurement instruments found to be suitable for the trigo
- Measurements show 5G signals comparable to other signals in the environment and significantly lower than the ARPANSA public limit.
- Indoor measurements with a multitude of radio technologies were well below the ARPANSA public limit
- MIMO systems increase measurement mplexity in a live network environment (e.g. dynamic beam steering). IEC working on methods massessing MIMO systems
- Requires a good understanding measurement practices and the mobile technology

Example 1: Dynamic beam steering in action

2.eleased by

Example 2:5G test car (video)

Team effort

John Parker Geoff Bail

Phill Knipe

Eman Younus

Debbie Wills

Steve Iskra

Mike Wood

Telstra staff at Southport exchange

Ericsson staff

PC)

Released by ARPANSA under the Freedom of Information Area Thank you

