Radiation literature survey

The radiation literature survey provides updates on published literature related to radiation (both ionising and non-ionising) and health.

Published literature includes articles in peer-reviewed scientific journals, scientific-body reports, fact sheets, conference proceedings etc.

The updates on new radiation literature that are of high quality and of public interest will be published as they arise. For each update, a short summary and a link to the abstract or to the full document (if freely available) are provided. The update may also include a commentary from ARPANSA and links to external websites for further information. The links may be considered useful at the time of preparation of the update however ARPANSA has no control over the content or currency of information on external links. Please see the ARPANSA website disclaimer.

Explanations of the more common terms used in the updates are found in the glossary.

The radiation literature that is listed in the updates is found by searching various databases and is not exhaustive.

Find out more about how you can search for scientific literature.

The intention of the radiation literature survey is to provide an update on new literature related to radiation and health that may be of interest to the general public. ARPANSA does not take responsibility for any of the content in the scientific literature and is not able to provide copies of the papers that are listed.


Are you looking for earlier editions of the Radiation literature survey?

Visit the National Library of Australia Australian Government Web Archive to access archived information no longer available on our website.

Effect of adverse environmental conditions and protective clothing on temperature rise in a human body exposed to radiofrequency electromagnetic fields

Authored By:

Moore SM et al.

Published In:

Bioelectromagnetics 2017

Date:

Mar 2017

Summary:

This simulation study investigated the thermal effects of radiofrequency (RF) exposure on workers’ bodies while wearing RF protective clothing. The body’s thermal response at various scenarios of environmental conditions (including high ambient temperature of up to 42.5°C and humidity of up to 80%) were investigated via a computer model. The study did not find any scenario that greatly influenced the localised temperatures in the skin, eyes, testes, marrow, brain, and core body. The study also confirmed that the worker exposure limits in the international RF Guidelines provide adequate protection even for the most adverse environmental conditions.

Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats

Authored By:

Oyewopo AO et al.

Published In:

Andrologia 2017

Date:

Mar 2017

Summary:

This is an animal study which investigated the effects of mobile phone use on testicular function. A total of 20 male rats were divided into five groups consisting of control, sham-exposed, and three groups exposed to RF from a GSM mobile phone for 1 or 2 or 3 hours/day for 28 days (exposure information was not provided in the study). The authors suggested that the RF exposure from mobile phone negatively affected testicular function.

ICNIRP Statement on Diagnostic Devices Using Non‑Ionizing Radiation: Existing Regulations and Potential Health Risks

Authored By:

Green AC, Coggon D, de Sèze R, Gowland PA, Marino C, Peralta AP, Söderberg PG, Stam R, Ziskin MC, van Rongen E, Feychting M, Asmuss M, Croft R, D'Inzeo G, Hirata A, Miller S, Oftedal G, Okuno T, Röösli M, Sienkiewicz Z, Watanabe S

Published In:

Health Phys 2017; 112 (3): 305-321

Date:

Feb 2017

Summary:

This is a statement issued by the International Commission on Non-Ionizing Radiation Protection which reviewed the evidence for health effects resulting from the use of non-ionising radiation (NIR) during diagnostic procedures. It also listed the regulations that are legally enforced internationally for the protection of patients as well as workers. The statement noted that the current balance of evidence on the clinical use of magnetic resonance imaging (MRI), ultrasound (in the absence of contrast agents), and optical radiation does not point to any adverse health effects. The statement also highlighted a knowledge gap in the health risks of foetal exposure to MRI and ultrasound in the first trimester of pregnancy, long-term exposure in MRI workers, and risks from interactions between ultrasound and contrast agent.

Commentary by ARPANSA:

This statement provides useful reference and advice on the potential health risks from the use of NIR in clinical settings. A statement on MRI has been published separately, which can be found on the ICNIRP website.

In this statement, particularly in Table 4a, some examples of legally-binding regulations associated with NIR diagnostic devices were mentioned. It is important to note that for Australia, all of the three documents mentioned in the table have been withdrawn by ARPANSA. The safety guidelines for magnetic resonance diagnostic facilities (1991) have been withdrawn as the material is covered by the ICNIRP Statement on Medical Magnetic Resonance (MR) Procedures: Protection of Patients (PDF 4.53 mb) (published in 2004).

Meta-analysis of association between mobile phone use and glioma risk

Authored By:

Wang Y et al.

Published In:

J Cancer Res Ther 2016; 12 (Supplement): C298-C300

Date:

Feb 2017

Summary:

This meta-analysis evaluated whether mobile phone use causes glioma. A total of eleven studies which were a combination of case-control and cohort studies, published from 2001 to 2008, were included. For mobile phone use of one year or more, no association with glioma was found (OR = 1.08, 95% CI = 0.91 – 1.25). However the association was found to be statistically significant for mobile phone use of five years or more (OR = 1.35, 95% CI = 1.09 – 1.62). Further analysis by the authors revealed no publication bias on those eleven studies. According to this meta-analysis, long-term mobile phone use may increase the risk of developing glioma.

Mobile phone use and risk for intracranial tumors and salivary gland tumors – a meta-analysis

Authored By:

Bortkiewicz A et al.

Published In:

Int J Occup Med Environ Health 2017; 30 (1): 27-43

Date:

Feb 2017

Summary:

This meta-analysis looked into whether mobile phone use is associated with intracranial and salivary gland tumours. A total of 24 case-control studies published between 2009 and 2014 were included in the meta‑analysis which captured over 26,000 cases and 50,000 controls. The authors found a significantly higher risk of an intracranial tumour (including salivary gland tumour) with long-term mobile phone use (OR = 1.32, 95% CI = 1.03-1.7). The authors concluded that long-term mobile phone use (more than 10 years) increases the risk of intracranial tumours.

Mobile phone use and risk of brain tumours: a systematic review of association between study quality, source of funding, and research outcomes

Authored By:

Prasad M et al.

Published In:

Neurol Sci 2017

Date:

Feb 2017

Summary:

This systematic review investigated the association between mobile phone use and brain tumours. The authors investigated whether factors such as source of study funding and quality of studies affected the study results. The review included 22 case-control studies, where 8 studies were part of the INTERPHONE study. The meta‑analysis that was performed on the remaining 14 studies revealed no increased risk of brain tumour (odds ratio, OR = 1.03; 95% confidence interval, 95% CI = 0.92 – 1.14). There was an association between long-term mobile phone use (10 years or longer) and brain tumour (OR = 1.33, 95% CI = 1.07 – 1.66). It was found that higher quality studies tended to show a statistically significant association with brain tumours. The authors reported that government-funded studies were generally of higher methodological quality than those partially or fully funded by industry. Somewhat confusingly, the authors also reported that there was no significant association between funding source and study outcomes.

Exposure to Radiofrequency Electromagnetic Fields From Wi-Fi in Australian Schools

Authored By:

Karipidis K, Henderson S, Wijayasinghe D, Tjong L, Tinker R

Published In:

Radiat Prot Dosimetry 2017

Date:

Jan 2017

Summary:

This measurement study assessed the radiofrequency (RF) electromagnetic fields exposure level due to Wi-Fi in Australian schools. A total of 23 schools across two Australian states (NSW and VIC) were measured. Exposure levels from other RF sources such as mobile phone base stations, radio and TV broadcast were also measured, to give a comparison to the Wi-Fi exposure level. Overall, the exposure levels from all RF sources measured were much lower than the public exposure limits in the Australian RF Standard. The typical and peak RF levels from Wi-Fi in the classrooms were of the order of 0.0001% and 0.01% of the Standard, respectively. Both in the classroom and in the school yard, the Wi-Fi exposure level is lower than that from broadcast radio. The authors concluded that the typical RF exposure level due to Wi-Fi in schools is very low and comparable to or lower than other environmental RF sources.

Commentary by ARPANSA:

ARPANSA has recently published this paper which is publicly available from Oxford Academic Journals. See ARPANSA's media release regarding the study and our webpage which contains more detailed information regarding the study.

Symptoms and the use of wireless communication devices: a prospective cohort study in Swiss adolescents

Authored By:

Schoeni A, Roser K, Röösli M

Published In:

Environ Res 2017; 154: 275-283

Date:

Jan 2017

Summary:

This cohort study investigated the association between use of wireless devices and health symptom reports in adolescents. A total of 439 students aged 12-17 years participated at the start of the study and a year later 425 students participated at a follow-up investigation, where they were asked about health symptoms and wireless device use via questionnaires. Mobile phone use data was obtained from the operator for 234 participants. The authors also estimated the RF exposure that participants were exposed to, via calculations. For many of the health symptoms assessed in the study, the associations with measures related to usage of wireless devices were stronger compared to measures related to the RF exposure. Whilst this study found that an increase in self-reported symptoms was. associated with use of wireless devices, the authors concluded that it is the use of mobile devices causing the symptoms rather than the RF exposure.

Commentary by ARPANSA:

This study by Schoeni et al. made a comparison between subjective data (self-reported information on mobile phone use) and objective data (mobile operator’s information). It was found that the self-reported information on mobile phone call duration was reported at seven times higher than that recorded by the operator. This suggests a recall bias with the self-reported information.

The reports by the Scientific Committee on Emerging and Newly Identified Health Risks (PDF 5 mb) (SCENIHR) and the Swedish Radiation Safety Authority (SSM) (PDF 1.5 mb) which were both produced in 2015 have maintained the conclusion that RF exposure is not causally linked to any health symptoms usually reported by individuals with electromagnetic hypersensitivity.

ANSES's OPINION and REPORT on the assessment of population exposure to electromagnetic field emissions by "smart meters"

Authored By:

ANSES - French Agency for Food, Environmental and Occupational Health & Safety

Published In:

ANSES - French Agency for Food, Environmental and Occupational Health & Safety

Date:

Jan 2017

Summary:

The French Agency for Food, Environmental and Occupational Health & Safety (ANSES) has recently assessed the health effects of EMF emitted by smart meters. The extremely low frequency (ELF) EMF exposure from the smart meters is comparable to other common electrical appliances such as television sets, whereas the RF exposure is well below that of a mobile phone. ANSES concluded that it is unlikely that exposure to EMF emitted by smart meters is associated with any adverse health effects in either the short term or the long term.

Effect of Low Level Subchronic Microwave Radiation on Rat Brain

Authored By:

Deshmukh PS et al.

Published In:

Biomed Environ Sci 2016; 29 (12): 858-867

Date:

Jan 2017

Summary:

This is an animal study investigating the effect of microwave radiation on brain function. A total of 24 rats were divided into four groups where one group was sham-exposed and three groups were exposed to RF at frequencies of 900, 1800, and 2450 megahertz (MHz), respectively. The exposure was done at specific absorption rates (SAR) ranging from 0.00058 to 0.00067 watts per kilogram (W/kg) which is around 0.8% of the public exposure limit in the Australian RF Standard. There was a decline in the cognitive function and an increase in both the heat shock protein level and DNA damage, when comparing the exposed group to the sham-exposed group. The authors concluded that low level RF exposure may have an adverse effect on the brain.

Pages