Radiation literature survey

The radiation literature survey provides updates on published literature related to radiation (both ionising and non-ionising) and health.

Published literature includes articles in peer-reviewed scientific journals, scientific-body reports, conference proceedings, etc.

The updates on new radiation literature that are of high quality and of public interest will be published as they arise. For each update, a short summary and a link to the abstract or to the full document (if freely available) are provided. The update may also include a commentary from ARPANSA and links to external websites for further information. The links may be considered useful at the time of preparation of the update however ARPANSA has no control over the content or currency of information on external links. Please see the ARPANSA website disclaimer.

Explanations of the more common terms used in the updates are found in the glossary.

The radiation literature that is listed in the updates is found by searching various databases and is not exhaustive.

Find out more about how you can search for scientific literature.

The intention of the radiation literature survey is to provide an update on new literature related to radiation and health that may be of interest to the general public. ARPANSA does not take responsibility for any of the content in the scientific literature and is not able to provide copies of the papers that are listed.


Are you looking for earlier editions of the Radiation literature survey?

Visit the National Library of Australia Australian Government Web Archive to access archived information no longer available on our website.

French study reports maternal exposure to magnetic fields is not associated with adverse pregnancy outcomes

Authored By:

Migault et al

Published In:

Environment International, 2018

Date:

Apr 2019

Summary:

This was a French cohort study investigating a possible relationship between maternal exposure to extremely low frequency magnetic fields (ELF MF) and the risk of moderate preterm birth or small size for gestational age at birth. The cohort included 18,329 infants born in 2011 from 33 weeks of gestation. The study examined the cumulative ELF MF exposure of the mothers both at home and at work. Exposure to participants was categorised at work by a job exposure matrix (JEM) and at home by previous measurements. The study reported no statistically significant association at any cumulative exposure level. The authors concluded that there was no evidence of an association between cumulative ELF MF exposure and moderate preterm birth or a baby being small for their gestational age at birth. 

Commentary by ARPANSA:

A similar UK cohort study (de Vocht et al 2014) examined residential proximity to magnetic fields and the association with low birth weight and preterm birth. This study included 140356 births. The authors reported no statistically significant changes in either birth weight or rates of preterm birth associated with magnetic fields. A 2015 review by the Scientific Committee on Emerging and Newly Identified Health Risks concluded there is no evidence that fetal exposure to ELF magnetic fields is associated with adverse developmental outcomes. 

Is perception key in predicting health symptoms? A study of perceived and modelled environmental exposures.

Authored By:

Martens et al

Published In:

Science of the Total Environment, 2018

Date:

Apr 2019

Summary:

This was a cohort study that examined the association between health symptoms and perceived and actual modelled environmental exposure of the participants. The environmental exposures included in the study were radiofrequency electromagnetic fields (RF EMF), noise and air pollution. The study originally in 2012 had 14,829 participants, however, in the 2015 follow-up only 7905 people responded. Perceived exposure was assessed using questionnaires in which participants self-assessed the extent to which they believed they were exposed to RF EMF on a scale of 1 to 6. The participants also completed questionnaires to assess their non-specific symptoms, sleep disturbances and respiratory symptoms, respectively. Lastly, the RF EMF exposure at each participant’s residence was modelled as either high (above 0.050 mW/m2) or low (below 0.050 mW/m2). The study found that the modelled RF EMF was not associated with any health symptoms. However, the perceived RF EMF exposure was associated with higher health symptoms in all categories. The authors suggest that when examining environmental exposure symptoms it is important to examine the perception of exposure to avoid bias when attributing health effects.

Commentary by ARPANSA:

A study by Baliatsas et al 2015 had similar results, finding no significant association between modelled RF EMF and non-specific symptoms or sleep quality. This study also concluded that perceived exposure was associated with the examined outcomes. At levels below the Australian standard, there is no established scientific evidence to support adverse health effects from RF EMF.

Study reports that sunburn can still happen, even if the UV index is below 3.

Authored By:

Lehmann et al.

Published In:

Photochemical and Photobiology, February 2019

Date:

Apr 2019

Summary:

This was an exposure study analysing ultraviolet radiation (UVR) measurement data collected in Germany from nine monitoring stations over ten years. The authors used the measurement data to explore the potential for receiving UV doses that would lead to erythema (sunburn) for fair skin (Fitzpatrick skin type II) people on days where the ultraviolet index (UVI) had a median value of 2 or less. Current UV protection advice given by the World Health Organisation (WHO) states that no protection is needed when the UVI is under 3. The authors reported that on days with UVIs of 1 or 2, sunburn could occur in a matter of hours around solar noon in summer and was also possible in winter over a longer exposure period.

The authors pointed to some limitations in the exposure and dose assessments within the study. These included comparing human exposure to the horizontally oriented flat design of the UV detectors, assigning the dose needed for sunburn to fair skin people without taking account variations within this group and not allowing for higher resistance to erythema caused by previous exposure. However, the largest uncertainty was around human exposure caused by individual behaviour in regard to aspects like clothing, shade and indoor activities. 

Commentary by ARPANSA:

The large dataset analysed in this study was a key strength in being able to categorise UV exposure over a long period of time and account for seasonal variability. Despite some of the limitations described by the authors, the study showed that, at least theoretically, sunburn could occur when the UVI is below 3 during extended periods outdoors. Although the WHO and leading radiation bodies such as ARPANSA apply the UVI model to communicate risk for solar UV protection, Cancer Council Australia has recently recommended that the application of sunscreen should be part of everyone’s daily routine if the UVI is above 3 or for extended periods outdoors at lower UVIs.

Childhood leukaemia risk: magnetic fields versus distance from power lines

Authored By:

Crespi et al

Published In:

Environmental Research, January 2019

Date:

Mar 2019

Summary:

This was a meta-analysis investigating the possible relationship between childhood leukaemia and living near power lines. The study included 4879 cases and 4835 controls. Exposure to power lines was assessed by assessing magnetic field strength and residential distance to power lines. Homes that were determined to be close enough to power lines and of sufficient voltage to have elevated magnetic fields had measurements taken. Additionally, all residences close to power lines over 100 kV had their exposure modelled and calculated. All other residences were considered to be exposed to a magnetic field of less than 0.1 µT. The study found that there was no statistically significant increased risk of childhood leukaemia associated with living within 50 meters of a power line (odds ratio (OR) of 1.44 with a 95% confidence interval (CI) of 0.63 - 3.29) or being exposed to a magnetic field above 0.4 µT (OR of 1.24 with a 95% CI of 0.50 – 3.05). However, when the authors examined participants who lived within 50 meters of 200 kV power lines and had a magnetic field above 0.4 µT, there was an increased risk of childhood leukaemia (OR of 4.06 with a 95% CI of 1.16 – 14.3). The authors concluded that their results suggest magnetic field exposure is not causally related to childhood leukaemia. They further suggest that there could be an unidentified explanation for the possible link between power lines and childhood leukaemia. 
 

Commentary by ARPANSA:

A similar study by Draper et al 2005 also found an association between distance to power lines and a small increased risk of childhood leukaemia. However, Draper et al did not calculate or measure the magnetic field exposure of the included participants. When the Crespi et al study examined exposure to magnetic fields, it was found that elevated exposure alone was not associated with childhood leukaemia. Both authors conclude that their results did not casually link magnetic field exposure to childhood leukaemia. 

The major positive result in the Crespi et al study was limited by a small sample size, as there was only 13 cases and 3 controls who lived within 50 meters from a power line and were exposed to magnetic fields greater than 0.4 µT. The epidemiological and laboratory evidence for an association between childhood leukaemia and magnetic field exposure has been reported as weak and it is not known how magnetic field exposure could cause childhood leukaemia (WHO, 2007).
 

Exposure to Electromagnetic Fields of High Voltage Overhead Power Lines and Female Infertility.

Authored By:

Esmailzadeh et al

Published In:

International Journal of Occupational and Environmental Medicine, January 2019

Date:

Feb 2019

Summary:

This was a case-control study in Iran, investigating a possible link between high voltage power lines and female infertility. The study included 462 women with infertility and 471 match controls with no history of infertility. The exposure to the participants was assessed by residential distance to high voltage power lines. The authors reported statistically significant associations between female infertility and high voltage power lines at distances of less than 500 meters (odds ratio (OR) of 4.14 with a 95% confidence interval (CI) of 2.61-6.57) and between 500-1000 meters (OR of 1.61 with a 95% CI of 1.05-2.47). When the results were adjusted for confounders, the association was no longer significant at distances between 500 and 1000 meters (OR of 1.53 with a 95% CI of 0.99 to 2.37). Based on the association at distances of less than 500 metres, the authors concluded that the current safety guidelines for exposure to electric and magnetic fields (EMF) are inadequate to protect people from the hazardous effects of these fields.

Commentary by ARPANSA:

The study suggested that exposure to EMF from high voltage power lines is associated with female infertility. However, the exposure assessment was based on residential distance to high voltage power lines, not by EMF strength. This association was reported when homes were less than 500 meters from power lines. However, at distances over 50 meters, the EMF from high voltage power lines is indistinguishable from typical background levels in the home (Karipidis, 2014). This indicates that exposure to EMF is unlikely to be the cause of the reported association.

Pilots and aircrew show a higher risk of melanoma and non-melanoma skin cancer

Authored By:

Miura et al

Published In:

The British Journal of Dermatology, December 2018

Date:

Feb 2019

Summary:

This study was a systematic review and meta-analysis of 12 previously published articles that investigated the risk of melanoma and keratinocyte cancers (KC) in airline pilots and cabin crew. The studies included in the analysis consisted of both retrospective and prospective cohort studies and provided data on both the incidence of these cancers and the resulting mortality as established by death registries, death certificates and physician records. The authors reported that, based on the available evidence, airline pilots and cabin crew had approximately twice the risk of developing melanoma and other skin cancers when compared to the general population. For melanoma incidence the pooled Standardised Incidence Ratio (SIR) was 2.03 (95% Confidence Interval (CI) 1.71-2.40) for airline pilots and 2.12 (95% CI 1.71-2.62) for cabin crew. This was similar for KC in pilots (SIR: 1.86 (95% CI 1.54-2.25) and cabin crew (SIR: 1.97 (95% CI 1.25-2.96). Further, airline pilots were about twice as likely to die from melanoma pooled Standardised Mortality Ratio (SMR) of 1.99 (95% CI 1.17-3.40). This higher mortality rate was not observed in cabin crew. The exposure agents considered as possible explanations for the higher than normal risk factors were occupational ultraviolet radiation (UVR) exposure and cosmic ionising radiation

The authors assessed that both pilots and cabin crew were not occupationally exposed to UVR as it was not detectable in the cabin of modern airliners and pilots were exposed to no higher than levels encountered on the ground during their flights. However, the study was not able to take into account recreational UVR exposure. Both pilots and cabin crew are recognised as being the highest exposed occupations to ionising radiation from cosmic rays and in this study this was assessed by measures including duration of employment, type of licence and cumulative flight hours.  Exposure to cosmic radiation, recreational UVR exposure and disruptions in circadian rhythm due to crossing time zones on long haul flights were considered to be potential explanations for the higher risk factors of melanoma and KC within pilots and cabin crew. 

Commentary by ARPANSA:

This review included studies of airline crews where the data was collected mostly between the 1970s to the 1990s, with some data covering the period from 1947. Therefore, the evidence is outdated and the relevance to modern air travel is uncertain. However, the reported higher risk to airline crew of developing skin cancer is a useful indicator for the direction of further research. This research currently includes dose assessments of exposure to cosmic radiation. Further, the recreational solar UVR exposure of airline crew may need to be investigated.
 

Radon exposures and lung cancer risk: analysis of uranium miner cohort

Authored By:

Lane et al

Published In:

International Archives of Occupational and Environmental Health, 2019

Date:

Feb 2019

Summary:

This was a meta-analysis of three cohort studies which investigated the risk of lung cancer mortality to workers exposed to low-level radon in uranium mines. The cohort studies included were from the Czech Republic, France and Canada collectively covering exposure periods from 1953 to 1999. Exposure to workers was assessed by both the concentration of radon in the air and by the length of employment in months. This was then used to derive an exposure unit of working level month (WLM). The study was limited to workers who had received less than 100 WLM in order to investigate low-level effects. The study found was an increased excess relative risk (ERR) risk in lung cancer mortality among workers per WLM of 0.022 (95% confidence interval (CI) of 0.013-0.034). However, the authors report that this risk was no longer statistically significant at an exposure of less than 10 WLM. The authors suggest the higher exposures are compatible with a linear non-threshold model and lower exposures are not. However, the authors state that no conclusion can be made at the low exposures due to the low statistical power.

Low radon exposures and lung cancer risk: joint analysis of the Czech, French, and Beaverlodge cohorts of uranium miners

Commentary by ARPANSA:

This study demonstrates the difficulty of evaluating the risk of lung cancer mortality from low-level exposures to radon. The authors reported that at low radon exposure of less than 10 WLM the risk of lung cancer mortality was no longer significant. A working level month within a uranium mine is approximately equivalent to 10 mSv of dose (ARPANSA, 2019). However, the data by Lane et al showed that this extends further and that at less than 19 WLM there is not a statistically significantly increased risk of lung cancer mortality (1.41 relative risk with a 95% CI of 0.90–2.25). In Australia, RPS C-1 2016 sets out the requirements for the protection of occupationally exposed persons in uranium mines. A number of studies have demonstrated the additional risk of lung cancer from radon exposure is small relative to the risk from tobacco smoking (ICRP, 2010). The best way of reducing the total lung cancer risk, as well as the lung cancer risk from exposure to radon, is to avoid tobacco smoking.

Mobile Phone Use and the Risk of Brain Tumours: Evidence from a Meta-Analysis

Authored By:

Wang et al

Published In:

World Neurosurgery, July 2018

Date:

Jan 2019

Summary:

This was a meta-analysis of 8 case-control and 2 cohort studies investigating the relationship between wireless (mobile and cordless) phone use and risk of adult glioma. Overall, there was no statistically significant association between adult glioma and wireless phone use (odds ratio (OR) of 1.03 with a 95% confidence interval (CI) of 0.92-1.16). When long-term wireless phone use was examined independently, a significant association with adult glioma was found (OR of 1.33 with a 95% CI of 1.05 – 1.67). However, there was inconsistency in the results of the studies included in the meta-analysis. The authors concluded that wireless phone use was not significantly associated with risk of adult glioma, but there could be increased risk in long-term users.

Commentary by ARPANSA:

Since the 2010 interphone study, there has been a number of meta-analyses and other case-control studies examining the evidence of a possible association between wireless phone use and the risk of brain tumours, particularly gliomas. Overall, these examinations do not show an increased risk of glioma. However, the evidence for an increased risk of glioma for heavy mobile phone users is not clear and further research is needed to clarify these results. The results reported by the authors of this study are in-line with the current state of the science and ARPANSA’s current advice on mobile phone use.

Occupational exposure to extremely low frequency magnetic fields and risk of Alzheimer disease

Authored By:

Jalilian et al

Published In:

NeuroToxicology, 2018

Date:

Jan 2019

Summary:

This was a systematic review and meta-analysis of 14 case-control and 8 cohort studies. The study investigated the relationship between Alzheimer’s disease and occupational exposure to extremely low frequency magnetic fields (ELF MF). The exposure to participants was categorised by a job exposure matrix, which included specific jobs that were assigned an exposure level, based on the work history of the participants. The authors reported an association between occupational exposure to ELF MF and Alzheimer’s disease (Risk Ratio (RR) 1.63; 95% confidence interval (CI): 1.35 – 1.96). The differences between gender was also examined with females having a higher RR (RR of 2.39 and 95% CI of 1.29 – 4.40) than males (RR of 1.50 and 95% CI of 1.22 – 1.85). There was moderate to high inconsistency between the studies included, which could indicate limitations of the methods. The meta-analysis also reported indications of publication bias, where papers showing effects are more likely to be published. The authors concluded that occupational exposure to ELF MF may increase the risk of Alzheimer’s disease. However, the authors suggest that this conclusion should be taken with caution due to the limitations of the research in the area.

Commentary by ARPANSA:

Some epidemiological studies observing outcomes from exposure to ELF MF have shown an association with Alzheimer’s disease. However, this association has not been established by consistent scientific evidence. This is reinforced by the current study, which also demonstrates the inconsistencies in the literature. The 2015 SCENIHR review assessed the impact of ELF MF on Alzheimer’s disease and indicated the need for further research.

 

Study shows association with high birth weights, childhood UV exposure and early age melanoma.

Authored By:

Wojcik et al

Published In:

Epidemiology, November 2018

Date:

Jan 2019

Summary:

This was a population-based, case-control study that analysed the effects of birth weight and infant to early life ultraviolet (UV) radiation exposure on the risk of melanoma in children, adolescents and young adults in the state of California, United States of America. The study compared 1396 cases of melanoma diagnosed before the age of 30 from 1988 to 2013 and 27 920 controls. Birth weights were obtained from birth records and UV exposure was assigned based on measurements of environmental UV levels in the place of birth. Cases and controls were further categorised by other factors such as race, ethnicity, gender and gestational age in order to account for adjust for these variables in the population. 

The authors reported an overall increased risk of melanoma for birthplaces where UV levels were higher. The risk was highest in people aged over 15 years where one group exposed to higher UV levels showed an 85% increase in melanoma risk (Odds ratio, OR: 1.85; 95% Confidence Interval, CI: 1.37, 2.50). However, the overall relationship did not show a clear trend of increasing risk with increasing UV levels. It was also reported that a birthweight greater than 4000 grams was associated with a 19% higher risk of melanoma and birth weights less than 2500 grams were associated with a 41% lower risk of melanoma. There was also evidence of a dose response where the risk increased per 1000 grams. The authors identified that the UV exposure data was limited in that it did not account for sun exposure based on factors such as behaviour, occupation, migration etc. The increased risk of melanoma in high birthweight cases was attributed to a greater surface area of skin being expose to UV from infancy.

Commentary by ARPANSA:

Overall, the results reported by the authors support ARPANSA’s sun protection messaging. Further, the study has indicated that birth weights may change the risk of melanoma development at a young age. Despite the limitations in the data used to assess UV exposure, the results indicate that sun protection may be advised from infancy.

Pages